Unveiling new depths of the universe, researchers across various insтιтutions have honed a groundbreaking method that promises to redefine our understanding of cosmological distances.

After a complex statistical analysis of some one million galaxies, a team of researchers at several Chinese universities, and the University of Cordoba was able to publish the results of the study in the journal Nature Astronomy. For over two years, they had been working on the project, which will make possible the determination of cosmological distances with a new and greater degree of precision.

The study developed a new method to detect what are called Baryon Acoustic Oscillations (BAO). These waves, whose existence was first demonstrated in 2005, are one of the few traces of the Big Bang that can still be detected in the cosmos.

They spread during the first 380,000 years of the universe’s life, expanding like sound waves through matter so H๏τ that it behaved like a fluid, something similar to what happens when a stone is thrown into a pond. Subsequently, the universe expanded and cooled to the point that those waves were frozen in time.

The interesting thing about these oscillations, witnesses to almost the entire history of the cosmos, is that their exact duration is known, so they are currently very useful for measuring cosmological distances based on the separation between galaxies. Being able to detect them and determine their size is, therefore, of the utmost importance to correctly map the universe out to very distant points.

“The results of this study now allow us to detect these waves through a new and independent method. By combining the two, we can determine cosmic distances with greater precision,” explained Antonio J. Cuesta, a researcher at the University of Cordoba’s Department of Physics and the sole Spanish author on the study.

The new method: Looking for anomalies in the orientation of galaxies

This new study analyzed, using statistical methods, a database of approximately one million galaxies, paying special attention to two very different factors: the ellipticity of the galaxies and the density around them.

In terms of their orientations, galaxies normally stretch to where there are a greater number of other galaxies, due to the pull of gravity, but there are certain places in the universe where this effect is not as intense. “It is in those points, where galaxies do not point where they should, where statistics tell us that the Baryon Acoustic Oscillations are located, since these waves also act as points of gravity attraction,” explained Antonio J. Cuesta.

Looking out far, looking into the past

“The first practical application that this study could have is to establish more precisely where the galaxies are located, and the separation between them and the Earth, but, in a way, we are also gazing into the past,” the researcher explained.

This new approach to Baryon Acoustic Oscillations, key to answering some of the great questions about the universe, opens new doors in the world of astronomy. Establishing cosmological distances offers, in turn, new clues about the history of the universe’s expansion and helps us to understand its composition in terms of dark matter and energy, two of the most elusive and enigmatic components of the cosmos.

Reference:

Kun Xu et al, Evidence for baryon acoustic oscillations from galaxy–ellipticity correlations, Nature Astronomy (2023). DOI: 10.1038/s41550-023-02035-4

Related Posts

Astronomers discover a highly habitable alien planet with a probability of 84% – Highest EVER

The Kepler mission discovered a planet orbiting the star KOI-3010 using the transit method. Researchers are drawn to this world because it has traits that are similar…

Quantum Experiment Breaks Reality By Seeing Two Versions Of Reality Existing At The Same Time

We are aware of how skewed our perception of reality is. How we see the world is shaped by our senses, our societies, and our knowledge. And…

Astronomers just discovered first direct evidence of black hole spinning

In a groundbreaking discovery, astronomers have obtained the first direct evidence confirming that black holes do indeed spin. This monumental finding focuses on the supermᴀssive black hole…

BREAKING🚨: AI Built To Find Aliens Just Picked Up EIGHT Aliens Radio Signals From Outer Space

Up until recently, astronomers have had difficulty separating probable alien signals from those created by humans. Thanks to a new artificial intelligence-trained system, eight unexplained radio signals…

Scientists Watched a Star Explode in Real Time for The First Time Ever

Astronomers have watched a giant star blow up in a fiery supernova for the first time ever — and the spectacle was even more explosive than the…

NASA’s $10 billion Telescope has just captured its first direct unbelievable image of a Planet outside our Solar system

The James Webb Space Telescope has captured the first direct image of a distant exoplanet, a world beyond our Solar System. Webb has returned several pictures of…