Researchers have proposed a “missing” scientific law for the evolution of life, minerals, planets, stars and pretty much everything else in the universe.

Darwin applied the theory of evolution to life on earth, but not to other mᴀssively complex systems like planets, stars, atoms and minerals. Now, an interdisciplinary group of researchers has identified a missing aspect of that theory that applies to essentially everything.

Their paper, “On the roles of function and selection in evolving systems,” published Oct. 16 in the Proceedings of the National Academy of Sciences, describes “a missing law of nature” that recognizes for the first time an important norm within the natural world’s workings. The new law states that complex natural systems evolve to states of greater patterning, diversity and complexity.

“This was a true collaboration between scientists and philosophers to address one of the most profound mysteries of the cosmos: why do complex systems, including life, evolve toward greater functional information over time?” said co-author Jonathan Lunine, the David C. Duncan Professor in the Physical Sciences and chair of astronomy in the College of Arts and Sciences.

The multi-disciplinary team included three philosophers of science, two astrobiologists, a data scientist, a mineralogist and a theoretical physicist, from the Carnegie Insтιтution for Science, the California Insтιтute of Technology and the University of Colorado, as well as Cornell. Carnegie scientist Michael L. Wong is first author; an astrobiologist, he and Lunine are working on a forthcoming second edition of Lunine’s textbook “Astrobiology: A Multidisciplinary Approach.”

The new work presents a modern addition to “macroscopic” laws of nature, which describe and explain phenomena experienced daily in the natural world. It postulates a “Law of Increasing Functional Information,” which states that a system will evolve “if many different configurations of the system undergo selection for one or more functions.”

This new law applies to systems that are formed from many different components, such as atoms, molecules or cells, that can be arranged and rearranged repeatedly, and are subject to natural processes that cause countless different arrangements to be formed — but in which only a small fraction of these configurations survive in a process called “selection for function.”

Regardless of whether the system is living or nonliving, when a novel configuration works well and function improves, evolution occurs, say the researchers.

In the case of biology, Darwin equated function primarily with survival — the ability to live long enough to produce fertile offspring. The new study expands that perspective, noting that at least three kinds of function occur in nature.

The most basic function is stability – stable arrangements of atoms or molecules are selected to continue. Also chosen to persist are dynamic systems with ongoing supplies of energy.

The third and most interesting function according to the researchers is “novelty” — the tendency of evolving systems to explore new configurations that sometimes lead to startling new behaviors or characteristics, like pH๏τosynthesis.

The same sort of evolution happens in the mineral kingdom. The earliest minerals represent particularly stable arrangements of atoms. Those primordial minerals provided foundations for the next generations of minerals, which participated in life’s origins. The evolution of life and minerals are intertwined, as life uses minerals for shells, teeth, and bones.

In the case of stars, the paper notes that just two major elements – hydrogen and helium – formed the first stars shortly after the big bang. Those earliest stars used hydrogen and helium to make about 20 heavier chemical elements. And the next generation of stars built on that diversity to produce almost 100 more elements.

The research has implications for the search for life in the cosmos, said Lunine, a member of the Carl Sagan Insтιтute. “If increasing functionality of evolving physical and chemical systems is driven by a natural law, we might expect life to be a common outcome of planetary evolution.”

The research was funded by the John Templeton Foundation. Lunine was supported as the inaugural McDonald Agape Visiting Scholar at the Dominican House of Studies in Washington, D.C. during the preparation of the paper.

Reference:

On the roles of function and selection in evolving systems, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2310223120

Related Posts

Astronomers discover a highly habitable alien planet with a probability of 84% – Highest EVER

The Kepler mission discovered a planet orbiting the star KOI-3010 using the transit method. Researchers are drawn to this world because it has traits that are similar…

Quantum Experiment Breaks Reality By Seeing Two Versions Of Reality Existing At The Same Time

We are aware of how skewed our perception of reality is. How we see the world is shaped by our senses, our societies, and our knowledge. And…

Astronomers just discovered first direct evidence of black hole spinning

In a groundbreaking discovery, astronomers have obtained the first direct evidence confirming that black holes do indeed spin. This monumental finding focuses on the supermᴀssive black hole…

BREAKING🚨: AI Built To Find Aliens Just Picked Up EIGHT Aliens Radio Signals From Outer Space

Up until recently, astronomers have had difficulty separating probable alien signals from those created by humans. Thanks to a new artificial intelligence-trained system, eight unexplained radio signals…

Scientists Watched a Star Explode in Real Time for The First Time Ever

Astronomers have watched a giant star blow up in a fiery supernova for the first time ever — and the spectacle was even more explosive than the…

NASA’s $10 billion Telescope has just captured its first direct unbelievable image of a Planet outside our Solar system

The James Webb Space Telescope has captured the first direct image of a distant exoplanet, a world beyond our Solar System. Webb has returned several pictures of…