These ripples in space-time were proposed by Albert Einstein over a century ago.

A group of Chinese scientists has recently found key evidence for the existence of nanohertz gravitational waves, marking a new era in nanohertz gravitational wave research. The research was based on pulsar timing observations carried out with the Five-hundred-meter Aperture Spherical radio Telescope (FAST).

The research was conducted by the Chinese Pulsar Timing Array (CPTA) collaboration, which comprises researchers from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) and other insтιтutes. Their findings were published online June 28 in the journal Research in Astronomy and Astrophysics (RAA).

Other international pulsar timing array collaborations will announce similar results in the same day.

Acceleration of mᴀssive objects disturbs the surrounding space-time and produces “ripples,” i.e., gravitational waves. Although such wave signals are extremely weak, they offer a direct method for probing mᴀsses that do not emit light. For this reason, astronomers have long aimed to use gravitational waves to aid in understanding the formation of the universe’s structures and investigating the growth, evolution, and merger of the most mᴀssive celestial objects in the universe, that is, supermᴀssive black holes. Such research will also help physicists gain insight into the fundamental physical laws of space-time.

Taking advantage of FAST’s high sensitivity, the CPTA research team monitored 57 millisecond pulsars with regular cadences for 41 months. The team found key evidence for quadrupole correlation signatures compatible with the prediction of nanohertz gravitational waves at a 4.6-sigma statistical confidence level (with a false alarm probability of two in a million).

The team used independently developed data analysis software and data processing algorithms to achieve its breakthrough at the same time as other international groups. Independent data processing pipelines produced compatible results.

The time span of CPTA data set is relative shorter at present. However, due to the high sensitivity of FAST telescope, CPTA achieved similar sensitivity comparing to other PTAs. The future observations will soon extend the span of CPTA data and help in identifying the astronomical sources of current signal.

Objects of greater mᴀss produce gravitational waves of lower frequency. For example, the most mᴀssive celestial body in the universe, the supermᴀssive black hole binaries (with 100 million to 100 billion times the solar mᴀss) in the center of galaxies, mainly generate gravitational waves in the nanohertz band, with corresponding signal time scales from years to decades. This frequency band also includes gravitational wave contributions from processes of the early universe as well as exotic objects such as cosmic strings.

Using nanohertz gravitational waves in cosmic observation is thus hugely important in studying key problems in contemporary astrophysics such as supermᴀssive black holes, the history of galaxy mergers, and the formation of large-scale structures in the universe.

Detection of nanohertz gravitational waves is very challenging, though, due to their extremely low frequency, where the corresponding period can be as long as several years and wavelengths up to several light-years. So far, long-term timing observation of millisecond pulsars with extreme rotational stability is the only known method for effectively detecting nanohertz gravitational waves.

Hunting for these waves is one of the major focuses of present-day physics and astronomy. Regional pulsar timing array collaborations, including the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the European Pulsar Timing Array (EPTA), and the Australian Parkes Pulsar Timing Array (PPTA), have been collecting pulsar timing data for more than 20 years, with the aim of detecting nanohertz gravitational waves. Recently, several new regional collaborations have also joined this field, including CPTA, the India Pulsar Timing Array (InPTA), and the South Africa Pulsar Timing Array (SAPTA).

The detection sensitivity of pulsar timing arrays to nanohertz gravitational waves strongly depends on the observational time span—that is, sensitivity grows rapidly with the increase in observational time span. The current CPTA’s observational time span is shorter, which makes it easier to effectively increase the time span, e.g. observing for another 41 months will double the time span.

In the future, these regional collaborations will promote international pulsar timing array collaboration and expand exploration of the universe through nanohertz gravitational wave observations.

Reference:

Heng Xu et al, Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Research in Astronomy and Astrophysics (2023). DOI: 10.1088/1674-4527/acdfa5

Related Posts

Astronomers discover a highly habitable alien planet with a probability of 84% – Highest EVER

The Kepler mission discovered a planet orbiting the star KOI-3010 using the transit method. Researchers are drawn to this world because it has traits that are similar…

Quantum Experiment Breaks Reality By Seeing Two Versions Of Reality Existing At The Same Time

We are aware of how skewed our perception of reality is. How we see the world is shaped by our senses, our societies, and our knowledge. And…

Astronomers just discovered first direct evidence of black hole spinning

In a groundbreaking discovery, astronomers have obtained the first direct evidence confirming that black holes do indeed spin. This monumental finding focuses on the supermᴀssive black hole…

BREAKING🚨: AI Built To Find Aliens Just Picked Up EIGHT Aliens Radio Signals From Outer Space

Up until recently, astronomers have had difficulty separating probable alien signals from those created by humans. Thanks to a new artificial intelligence-trained system, eight unexplained radio signals…

Scientists Watched a Star Explode in Real Time for The First Time Ever

Astronomers have watched a giant star blow up in a fiery supernova for the first time ever — and the spectacle was even more explosive than the…

NASA’s $10 billion Telescope has just captured its first direct unbelievable image of a Planet outside our Solar system

The James Webb Space Telescope has captured the first direct image of a distant exoplanet, a world beyond our Solar System. Webb has returned several pictures of…