Unbelievable breakthrough in science Researchers have managed to trap light inside a magnet. The possibilities are endless.

A new study led by Vinod M. Menon and his group at the City College of New York shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

In their new article in Nature, Menon and his team report the properties of a layered magnet that hosts strongly bound excitons—quasiparticles with particularly strong optical interactions. Because of that, the material is capable of trapping light—all by itself.

As their experiments show, the optical responses of this material to magnetic phenomena are orders of magnitude stronger than those in typical magnets. “Since the light bounces back and forth inside the magnet, interactions are genuinely enhanced,” said Dr. Florian Dirnberger, the lead-author of the study.

“To give an example, when we apply an external magnetic field the near-infrared reflection of light is altered so much, the material basically changes its color. That’s a pretty strong magneto-optic response.”

“Ordinarily, light does not respond so strongly to magnetism,” said Menon. “This is why technological applications based on magneto-optic effects often require the implementation of sensitive optical detection schemes.”

On how the advances can benefit ordinary people, study co-author Jiamin Quan said, “Technological applications of magnetic materials today are mostly related to magneto-electric phenomena. Given such strong interactions between magnetism and light, we can now hope to one day create magnetic lasers and may reconsider old concepts of optically controlled magnetic memory.” Rezlind Bushati, a graduate student in the Menon group, also contributed to the experimental work.

Reference:

Florian Dirnberger et al, Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons, Nature (2023). DOI: 10.1038/s41586-023-06275-2

Related Posts

Diving into the mysteries of the cosmos Astronomers challenge existing theories with a mindboggling discovery of an unexpected exoplanet.

The discovery of a gaint exoplanet that is far too mᴀssive for its sun is calling into question what was previously understood about the formation of planets…

Mindblowing discovery alert Astronomers have just found a planetforming disk beyond our Milky Way galaxy unlocking new cosmic secrets.

Astronomers have achieved a significant milestone in space exploration by identifying, for the first time, a planet-forming disk around a young star in a galaxy outside our…

Unlocking the mysteries of dark matter through cuttingedge research at the worlds largest particle accelerator. The pursuit of knowledge knows no bounds.

The existence of Dark Matter is a long-standing puzzle in our universe. Dark Matter makes up about a quarter of our universe, yet it does not interact…

Breaking news from the cosmos Astronomers have found an alien star system with six exoplanets orbiting in a rare and harmonious resonance chain. The universe never fails to amaze us

In an extraordinary discovery, astronomers have identified a planetary system, not far from our Solar System, where six exoplanets orbit their star in a rare and harmonious…

Discovering a mesmerizing star system with six planets dancing in harmony to an otherworldly rhythm. Natures symphony continues to astound us.

Scientists have discovered a rare sight in a nearby star system: Six planets orbiting their central star in a rhythmic beat. The planets move in an orbital…

Exciting news as the United States makes plans to return to the moon after over 50 years. A historic moment ahead

More than 50 years after the last Apollo mission, the United States will try once again to land a craft on the moon on January 25, said…