Unveiling the mystery of metallic meteorites and magnetic fields Researchers have made a breakthrough in understanding planetary core formations. Science is fascinating

Yale researchers may have solved a longstanding puzzle as to why certain metallic meteorites show traces of a magnetic field—a finding that may shed light on the formation of magnetic dynamos at the core of planets.

Planetary magnetism is key to understanding both the internal structure and evolution of many celestial bodies. The cores of Earth, Mercury, and two of Jupiter’s moons, Ganymede and Io, for example, all generate detectable magnetic fields. And there are traces of ancient magnetism found on Mars and Earth’s moon.

But there are also meteorites—small space rocks that have fallen to Earth—that contain hints of magnetism. Scientists say some iron meteorites bear the remnants of an internally-generated magnetic field—which shouldn’t be possible. Although iron meteorites are thought to represent the metallic cores of asteroids (small planetary bodies), these cores are not expected to have the highly specific internal characteristics necessary to simultaneously generate and record magnetism.

In a new study, Yale scientists Zhongtian Zhang and David Bercovici propose that under certain conditions, collisions between asteroids can lead to the formation of metal asteroids that can generate a magnetic field and record the magnetism by their own materials. Small fragments of these asteroids, with the traces of magnetism, could fall to Earth as meteorites.

The study appears in the journal Proceedings of the National Academy of Sciences.

“I had been aware of this puzzle for some time,” said Zhang, a graduate student in Yale’s Department of Earth & Planetary Sciences and first author of the study. “When I first came to Yale and discussed potential research directions with Dave, one of the papers he sent me was about the observation of paleomagnetism in iron meteorites.”

Several years later, Zhang was conducting research on what are known as “rubble-pile” asteroids, which are created when gravitational forces cause the fragments of asteroid collisions to re-form in new combinations.

That work inspired Zhang and Bercovici to consider the question of whether the rubble pile phenomenon might be relevant to the generation of a magnetic field.

The researchers’ modeling suggests that after an asteroid collision, it is possible for new, iron-heavy asteroids to form with a cold, rubble-pile inner core surrounded by a warmer liquid outer layer. When the colder core begins to draw heat from the outer layer, and lighter elements such as sulphur are released, they report, it initiates convection—which in turn creates a magnetic field.

According to their model, this sort of dynamo could generate a magnetic field for several million years, which would be long enough for its presence to be detected in iron meteorites by scientists billions of years later.

“There are several pieces to this puzzle for which Zhongtian has devised a creative and clever solution,” said Bercovici, the Frederick William Beinecke Professor of Earth & Planetary Sciences in Yale’s Faculty of Arts and Sciences.

“For instance, the idea of a rubble-pile core is really like dropping ice cubes into a molten metal,” Bercovici said. “They can’t be too big or too small. But there is an optimum size that is just small enough to cool in space, but also sink fast enough into the melted metal and pile up in the center to make an inner core like Earth’s, at least for a little while.”

Reference:

Zhongtian Zhang et al, Generation of a measurable magnetic field in a metal asteroid with a rubble-pile core, Proceedings of the National Academy of Sciences (2023). DOI: 10.1073/pnas.2221696120

Related Posts

Diving into the mysteries of the cosmos Astronomers challenge existing theories with a mindboggling discovery of an unexpected exoplanet.

The discovery of a gaint exoplanet that is far too mᴀssive for its sun is calling into question what was previously understood about the formation of planets…

Mindblowing discovery alert Astronomers have just found a planetforming disk beyond our Milky Way galaxy unlocking new cosmic secrets.

Astronomers have achieved a significant milestone in space exploration by identifying, for the first time, a planet-forming disk around a young star in a galaxy outside our…

Unlocking the mysteries of dark matter through cuttingedge research at the worlds largest particle accelerator. The pursuit of knowledge knows no bounds.

The existence of Dark Matter is a long-standing puzzle in our universe. Dark Matter makes up about a quarter of our universe, yet it does not interact…

Breaking news from the cosmos Astronomers have found an alien star system with six exoplanets orbiting in a rare and harmonious resonance chain. The universe never fails to amaze us

In an extraordinary discovery, astronomers have identified a planetary system, not far from our Solar System, where six exoplanets orbit their star in a rare and harmonious…

Discovering a mesmerizing star system with six planets dancing in harmony to an otherworldly rhythm. Natures symphony continues to astound us.

Scientists have discovered a rare sight in a nearby star system: Six planets orbiting their central star in a rhythmic beat. The planets move in an orbital…

Exciting news as the United States makes plans to return to the moon after over 50 years. A historic moment ahead

More than 50 years after the last Apollo mission, the United States will try once again to land a craft on the moon on January 25, said…