A mindblowing celestial mystery A mᴀssive star vanished without a supernova explosion leaving astronomers puzzled.

In 2009 a giant star 25 times more mᴀssive than the sun simply vanished. OK, it wasn’t quite that simple. It underwent a period of brightening, increasing in luminosity to a million suns, just as if it was ready to explode into a supernova. But then it faded rather than exploding. And when astronomers tried to see the star using the Large Binocular Telescope (LBT), Hubble and the Spitzer space telescope, they couldn’t see anything.

The star, known as N6946-BH1, is now considered a failed supernova. The BH1 in its name is due to the fact that astronomers think the star collapsed to become a black hole rather than triggering a supernova. But that has been conjecture. All we’ve known for sure is that it brightened for a time then grew too dim for our telescopes to observe. But that has changed, thanks to the James Webb Space Telescope (JWST).

The new study, published on the arXiv preprint server, analyzes data gathered by JWST’s NIRCam and MIRI instruments. It shows a bright infrared source that appears to be a remnant dust shell surrounding the position of the original star. This would be consistent with material ejected from the star as it brightened rapidly. It could also be an infrared glow from material infalling into the black hole, though that seems less likely.

Surprisingly, the team also found not one remnant object, but three. This makes the failed supernova model less likely. Earlier observations of N6946-BH1 were a blend of these three sources since the resolution wasn’t high enough to distinguish them. So a more likely model is that the 2009 brightening was caused by a stellar merger. What appeared to be a bright mᴀssive star was a star system that brightened as two stars merged, then faded.

Images of BH1 show three sources, not one. Credit: Beasor, et al

While the data leans toward the merger model, it can’t rule out the failed supernova model. And that makes our understanding of supernovae and stellar mᴀss black holes more complicated. We know from black hole mergers observed by LIGO and other gravitational wave observatories that stellar-mᴀss black holes exist and are relatively common.

So some mᴀssive stars do become black holes. But whether they become supernovae first is still in question. Regular supernovae can have enough remnant mᴀss to become a black hole, but it’s hard to imagine how the largest stellar black holes could have formed after supernovae.

N6946-BH1 is in a galaxy 22 million light-years away, so the fact that JWST can distinguish multiple sources is impressive. It also gives astronomers hope that similar stars will be observed in time. With more data, we should be able to distinguish between stellar mergers and true failed supernovae, which will help us understand the last stages of stars as they move toward becoming stellar-mᴀss black holes.

Reference:

Emma R. Beasor et al, JWST reveals a luminous infrared source at the position of the failed supernova candidate N6946-BH1, arXiv (2023). DOI: 10.48550/arxiv.2309.16121

Provided by Universe Today

Related Posts

Diving into the mysteries of the cosmos Astronomers challenge existing theories with a mindboggling discovery of an unexpected exoplanet.

The discovery of a gaint exoplanet that is far too mᴀssive for its sun is calling into question what was previously understood about the formation of planets…

Mindblowing discovery alert Astronomers have just found a planetforming disk beyond our Milky Way galaxy unlocking new cosmic secrets.

Astronomers have achieved a significant milestone in space exploration by identifying, for the first time, a planet-forming disk around a young star in a galaxy outside our…

Unlocking the mysteries of dark matter through cuttingedge research at the worlds largest particle accelerator. The pursuit of knowledge knows no bounds.

The existence of Dark Matter is a long-standing puzzle in our universe. Dark Matter makes up about a quarter of our universe, yet it does not interact…

Breaking news from the cosmos Astronomers have found an alien star system with six exoplanets orbiting in a rare and harmonious resonance chain. The universe never fails to amaze us

In an extraordinary discovery, astronomers have identified a planetary system, not far from our Solar System, where six exoplanets orbit their star in a rare and harmonious…

Discovering a mesmerizing star system with six planets dancing in harmony to an otherworldly rhythm. Natures symphony continues to astound us.

Scientists have discovered a rare sight in a nearby star system: Six planets orbiting their central star in a rhythmic beat. The planets move in an orbital…

Exciting news as the United States makes plans to return to the moon after over 50 years. A historic moment ahead

More than 50 years after the last Apollo mission, the United States will try once again to land a craft on the moon on January 25, said…