Astronomers Observe the Vanishing of a Mᴀssive Star: JWST Holds Potential Answers

 

 

In 2009 a giant star 25 times more mᴀssive than the sun simply vanished. OK, it wasn’t quite that simple. It underwent a period of brightening, increasing in luminosity to a million suns, just as if it was ready to explode into a supernova. But then it faded rather than exploding. And when astronomers tried to see the star using the Large Binocular Telescope (LBT), Hubble and the Spitzer space telescope, they couldn’t see anything.

The star, known as N6946-BH1, is now considered a failed supernova. The BH1 in its name is due to the fact that astronomers think the star collapsed to become a black hole rather than triggering a supernova. But that has been conjecture. All we’ve known for sure is that it brightened for a time then grew too dim for our telescopes to observe. But that has changed, thanks to the James Webb Space Telescope (JWST).

 

 

The new study, published on the arXiv preprint server, analyzes data gathered by JWST’s NIRCam and MIRI instruments. It shows a bright infrared source that appears to be a remnant dust shell surrounding the position of the original star. This would be consistent with material ejected from the star as it brightened rapidly. It could also be an infrared glow from material infalling into the black hole, though that seems less likely.

Surprisingly, the team also found not one remnant object, but three. This makes the failed supernova model less likely. Earlier observations of N6946-BH1 were a blend of these three sources since the resolution wasn’t high enough to distinguish them. So a more likely model is that the 2009 brightening was caused by a stellar merger. What appeared to be a bright mᴀssive star was a star system that brightened as two stars merged, then faded.

Images of BH1 show three sources, not one. Credit: Beasor, et al

While the data leans toward the merger model, it can’t rule out the failed supernova model. And that makes our understanding of supernovae and stellar mᴀss black holes more complicated. We know from black hole mergers observed by LIGO and other gravitational wave observatories that stellar-mᴀss black holes exist and are relatively common.

So some mᴀssive stars do become black holes. But whether they become supernovae first is still in question. Regular supernovae can have enough remnant mᴀss to become a black hole, but it’s hard to imagine how the largest stellar black holes could have formed after supernovae.

N6946-BH1 is in a galaxy 22 million light-years away, so the fact that JWST can distinguish multiple sources is impressive. It also gives astronomers hope that similar stars will be observed in time. With more data, we should be able to distinguish between stellar mergers and true failed supernovae, which will help us understand the last stages of stars as they move toward becoming stellar-mᴀss black holes.

Related Posts

Were they merely artistic expressioпs or coυld they have beeп aпcieпt astroпaυts? vs

Delviпg iпto the eпigmatic aппals of aпcieпt Sυmeriaп civilizatioп, oпe caппot help bυt be iпtrigυed by the depictioпs of wiпged beiпgs kпowп as the Aппυпaki. These aпcieпt…

Fossil Discovery: 2,000-Year-Old Horse Uпearthed with Remпaпts of Saddle aпd Harпess iп Pompeii vs

P𝚘m𝚙𝚎ii, 𝚊п 𝚊пci𝚎пt R𝚘m𝚊п cit𝚢 𝚙𝚛𝚎s𝚎𝚛v𝚎𝚍 𝚋𝚢 t𝚑𝚎 𝚎𝚛𝚞𝚙ti𝚘п 𝚘𝚏 M𝚘𝚞пt V𝚎s𝚞vi𝚞s iп 79 CE, 𝚑𝚊s 𝚙𝚛𝚘vi𝚍𝚎𝚍 п𝚞m𝚎𝚛𝚘𝚞s 𝚊𝚛c𝚑𝚊𝚎𝚘l𝚘𝚐ic𝚊l iпsi𝚐𝚑ts iпt𝚘 t𝚑𝚎 𝚍𝚊il𝚢 li𝚏𝚎 𝚊п𝚍 m𝚊t𝚎𝚛i𝚊l c𝚞lt𝚞𝚛𝚎…

Uпearthiпg History: Discovery of 48 Skeletoпs iп ‘Extremely Rare’ Black Death Plagυe Pit, Majority of Them Childreп. vs

The Uпiversity of Sheffield has discovered a hυge bυrial site at a 14th ceпtυry moпastery iп Liпcolпshire. Aп extremely rare mᴀss grave of plagυe victims has beeп…

Amaziпg Fiпdiпgs from the 5,500-Year-Old Giaпt 10M High Tomb iп Romaпia vs

Iп the legeпds of the peoples of the world, there are stories aboυt giaпts. Romaпia is located west of the Black Sea of Eυrope, this coυпtry has…

Uпraveliпg the Mystery: Decodiпg the Eпigma of the Giaпt Bυried Uпdergroυпd iп the Desert. vs

Iп the vast expaпse of the υпiverse, where sileпce ofteп reigпs sυpreme, astroпomers have detected pecυliar sigпals that defy coпveпtioпal cosmic explaпatioпs. These υпυsυal cosmic emissioпs, thoυgh…

A series of υпυsυal remaiпs foυпd iп the Mexicaп cave date back to 3000 years. vs

A series of υпυsυal remaiпs foυпd iп the Mexicaп cave date back to 3000 years. Iп Aveпdaños Cave iп Mexico, a baby skeletoп, the lower half of…