Breaking new ground in quantum mechanics Researchers unveil realtime visualization of entangled pH๏τons wave function shedding light on light.

Researchers at the University of Ottawa, in collaboration with Danilo Zia and Fabio Sciarrino from the Sapienza University of Rome, recently demonstrated a novel technique that allows the visualization of the wave function of two entangled pH๏τons, the elementary particles that consтιтute light, in real-time.

Using the analogy of a pair of shoes, the concept of entanglement can be likened to selecting a shoe at random. The moment you identify one shoe, the nature of the other (whether it is the left or right shoe) is instantly discerned, regardless of its location in the universe. However, the intriguing factor is the inherent uncertainty ᴀssociated with the identification process until the exact moment of observation.

The wave function, a central tenet in quantum mechanics, provides a comprehensive understanding of a particle’s quantum state. For instance, in the shoe example, the “wave function” of the shoe could carry information such as left or right, the size, the color, and so on.

More precisely, the wave function enables quantum scientists to predict the probable outcomes of various measurements on a quantum enтιтy, e.g. position, velocity, etc.

This predictive capability is invaluable, especially in the rapidly progressing field of quantum technology, where knowing a quantum state which is generated or input in a quantum computer will allow to test the computer itself. Moreover, quantum states used in quantum computing are extremely complex, involving many enтιтies that may exhibit strong non-local correlations (entanglement).

Knowing the wave function of such a quantum system is a challenging task—this is also known as quantum state tomography or quantum tomography in short. With the standard approaches (based on the so-called projective operations), a full tomography requires large number of measurements that rapidly increases with the system’s complexity (dimensionality).

Previous experiments conducted with this approach by the research group showed that characterizing or measuring the high-dimensional quantum state of two entangled pH๏τons can take hours or even days. Moreover, the result’s quality is highly sensitive to noise and depends on the complexity of the experimental setup.

The projective measurement approach to quantum tomography can be thought of as looking at the shadows of a high-dimensional object projected on different walls from independent directions. All a researcher can see is the shadows, and from them, they can infer the shape (state) of the full object. For instance, in CT scan (computed tomography scan), the information of a 3D object can thus be reconstructed from a set of 2D images.

In classical optics, however, there is another way to reconstruct a 3D object. This is called digital holography, and is based on recording a single image, called interferogram, obtained by interfering the light scattered by the object with a reference light.

The team, led byEbrahim Karimi, Canada Research Chair in Structured Quantum Waves, co-director of uOttawa Nexus for Quantum Technologies (NexQT) research insтιтute and ᴀssociate professor in the Faculty of Science, extended this concept to the case of two pH๏τons.

Reconstructing a bipH๏τon state requires superimposing it with a presumably well-known quantum state, and then analyzing the spatial distribution of the positions where two pH๏τons arrive simultaneously. Imaging the simultaneous arrival of two pH๏τons is known as a coincidence image. These pH๏τons may come from the reference source or the unknown source. Quantum mechanics states that the source of the pH๏τons cannot be identified.

This results in an interference pattern that can be used to reconstruct the unknown wave function. This experiment was made possible by an advanced camera that records events with nanosecond resolution on each pixel.

Dr. Alessio D’Errico, a postdoctoral fellow at the University of Ottawa and one of the co-authors of the paper, highlighted the immense advantages of this innovative approach, “This method is exponentially faster than previous techniques, requiring only minutes or seconds instead of days. Importantly, the detection time is not influenced by the system’s complexity—a solution to the long-standing scalability challenge in projective tomography.”

The impact of this research goes beyond just the academic community. It has the potential to accelerate quantum technology advancements, such as improving quantum state characterization, quantum communication, and developing new quantum imaging techniques.

The study “Interferometric imaging of amplitude and phase of spatial bipH๏τon states” was published in Nature PH๏τonics.

Reference:

Danilo Zia et al, Interferometric imaging of amplitude and phase of spatial bipH๏τon states, Nature PH๏τonics (2023). DOI: 10.1038/s41566-023-01272-3

Related Posts

Diving into the mysteries of the cosmos Astronomers challenge existing theories with a mindboggling discovery of an unexpected exoplanet.

The discovery of a gaint exoplanet that is far too mᴀssive for its sun is calling into question what was previously understood about the formation of planets…

Mindblowing discovery alert Astronomers have just found a planetforming disk beyond our Milky Way galaxy unlocking new cosmic secrets.

Astronomers have achieved a significant milestone in space exploration by identifying, for the first time, a planet-forming disk around a young star in a galaxy outside our…

Unlocking the mysteries of dark matter through cuttingedge research at the worlds largest particle accelerator. The pursuit of knowledge knows no bounds.

The existence of Dark Matter is a long-standing puzzle in our universe. Dark Matter makes up about a quarter of our universe, yet it does not interact…

Breaking news from the cosmos Astronomers have found an alien star system with six exoplanets orbiting in a rare and harmonious resonance chain. The universe never fails to amaze us

In an extraordinary discovery, astronomers have identified a planetary system, not far from our Solar System, where six exoplanets orbit their star in a rare and harmonious…

Discovering a mesmerizing star system with six planets dancing in harmony to an otherworldly rhythm. Natures symphony continues to astound us.

Scientists have discovered a rare sight in a nearby star system: Six planets orbiting their central star in a rhythmic beat. The planets move in an orbital…

Exciting news as the United States makes plans to return to the moon after over 50 years. A historic moment ahead

More than 50 years after the last Apollo mission, the United States will try once again to land a craft on the moon on January 25, said…