Chinese astronomers astound with new insights into the intricate workings of black hole relativistic jets. A remarkable feat of astronomical exploration.

Black holes are the most mysterious objects in the universe, with features that sound like they come straight from a sci-fi movie.

Stellar-mᴀss black holes with mᴀsses of roughly 10 suns, for example, reveal their existence by eating materials from their companion stars. And in some instances, supermᴀssive black holes accumulate at the center of some galaxies to form bright compact regions known as quasars with mᴀsses equal to millions to billions of our sun. A subset of accreting stellar-mᴀss black holes that can launch jets of highly magnetized plasma are called microquasars.

An international team of scientists, including UNLV astrophysicist Bing Zhang, reports in Nature on a dedicated observational campaign on the galactic microquasar dubbed GRS 1915+105. The team revealed features of a microquasar system that have never before been seen.

Using the mᴀssive Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China, astronomers discovered a quasi-periodic oscillation (QPO) signal in the radio band for the first time from any microquasar systems. QPOs are a phenomenon that astronomers use to understand how stellar systems like black holes function. While QPOs have been observed in X-rays from microquasars, their presence outside of this context—as part of the system’s radio emission—is unique.

“The peculiar QPO signal has a rough period of 0.2 seconds, or a frequency of about 5 Hertz,” said Wei Wang, a professor with China’s Wuhan University, who led the team that made the discovery. “Such a signal does not always exist and only shows up under special physical conditions. Our team was lucky enough to catch the signal twice—in January 2021 and June 2022, respectively.”

According to UNLV’s Zhang, director of the Nevada Center for Astrophysics and one of the study’s corresponding authors, this unique feature may provide the first evidence of activity from a “jet” launched by a galactic stellar-mᴀss black hole. Under certain conditions, some black hole binary systems launch a jet—a mix of parallel beams of charged matter and a magnetic field that moves with a swiftness approaching the speed of light.

“In accreting black hole systems, X-rays usually probe the accretion disk around the black hole while radio emission usually probes the jet launched from the disk and the black hole,” said Zhang. “The detailed mechanism to induce temporal modulation in a relativistic jet is not identified, but one plausible mechanism would be that the jet is underlying precession, which means the jet direction is regularly pointing towards different directions and returns to the original direction once every about 0.2 seconds.”

Zhang said that a misalignment between the spin axis of the black hole and its accretion disk (extremely H๏τ, bright spinning gases surrounding the black hole) could cause this effect, which is a natural consequence of a dragging of spacetime near a rapidly spinning black hole.

“Other possibilities exist, though, and continued observations of this and other galactic microquasar sources will bring more clues to understand these mysterious QPO signals,” said Zhang.

Reference:

Pengfu Tian et al, Subsecond periodic radio oscillations in a microquasar, Nature (2023). DOI: 10.1038/s41586-023-06336-6

Related Posts

Diving into the mysteries of the cosmos Astronomers challenge existing theories with a mindboggling discovery of an unexpected exoplanet.

The discovery of a gaint exoplanet that is far too mᴀssive for its sun is calling into question what was previously understood about the formation of planets…

Mindblowing discovery alert Astronomers have just found a planetforming disk beyond our Milky Way galaxy unlocking new cosmic secrets.

Astronomers have achieved a significant milestone in space exploration by identifying, for the first time, a planet-forming disk around a young star in a galaxy outside our…

Unlocking the mysteries of dark matter through cuttingedge research at the worlds largest particle accelerator. The pursuit of knowledge knows no bounds.

The existence of Dark Matter is a long-standing puzzle in our universe. Dark Matter makes up about a quarter of our universe, yet it does not interact…

Breaking news from the cosmos Astronomers have found an alien star system with six exoplanets orbiting in a rare and harmonious resonance chain. The universe never fails to amaze us

In an extraordinary discovery, astronomers have identified a planetary system, not far from our Solar System, where six exoplanets orbit their star in a rare and harmonious…

Discovering a mesmerizing star system with six planets dancing in harmony to an otherworldly rhythm. Natures symphony continues to astound us.

Scientists have discovered a rare sight in a nearby star system: Six planets orbiting their central star in a rhythmic beat. The planets move in an orbital…

Exciting news as the United States makes plans to return to the moon after over 50 years. A historic moment ahead

More than 50 years after the last Apollo mission, the United States will try once again to land a craft on the moon on January 25, said…