Researchers have observed the X-ray emission of the most luminous quasar seen in the last 9 billion years of cosmic history.

Researchers have observed the X-ray emission of the most luminous quasar seen in the last 9 billion years of cosmic history, known as SMSS J114447.77-430859.3, or J1144 for short. The new perspective sheds light on the inner workings of quasars and how they interact with their environment. The research is published in Monthly Notices of the Royal Astronomical Society.

Hosted by a galaxy 9.6 billion light years away from the Earth, between the constellations of Centaurus and Hydra, J1144 is extremely powerful, shining 100,000 billion times brighter than the Sun. J1144 is much closer to Earth than other sources of the same luminosity, allowing astronomers to gain insight into the black hole powering the quasar and its surrounding environment. The study was led by Dr Elias Kammoun, a postdoctoral researcher at the Research Insтιтute in Astrophysics and Planetology (IRAP), and Zsofi Igo, a PhD candidate at the Max Planck Insтιтute for Extraterrestrial Physics (MPE).

Quasars are among the brightest and most distant objects in the known universe, powered by the fall of gas into a supermᴀssive black hole.powered by the fall of gas into a supermᴀssive black hole. They can be described as active galactic nuclei (AGN) of very high luminosity that emit vast amounts of electromagnetic radiation observable in radio, infrared, visible, ultraviolet and X-ray wavelengths. J1144 was initially observed in visible wavelengths in 2022 by the SkyMapper Southern Survey (SMSS).

For this study, researchers combined observations from several space-based observatories: the eROSITA instrument on board the Spectrum-Roentgen-Gamma (SRG) observatory, the ESA XMM-Newton observatory, NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR), and NASA’s Neil Gehrels Swift observatory.

The team used the data from the four observatories to measure the temperature of the X-rays being emitted from the quasar.X-rays being emitted from the quasar. They found this temperature to be around 350 million Kelvin, more than 60,000 times the temperature at the surface of the Sun. The team also found that the mᴀss of the black hole at the quasar’s centre is around 10 billion times the mᴀss of the Sun10 billion times the mᴀss of the Sun, and the rate at which it is growing to be of the order of 100 solar mᴀsses per year.

The X-ray light from this source varied on a time scale of a few days, which is not usually seen in quasars with black holes as large as the one residing in J1144. The typical timescale of variability for a black hole of this size would be on the order of months or even years. The observations also showed that while a portion of the gas is swallowed by the black hole, some gas is ejected in the form of extremely powerful winds, injecting large amounts of energy into the host galaxy.

Dr. Kammoun, lead author of the paper, says “We were very surprised that no prior X-ray observatory has ever observed this source despite its extreme power.”

He adds, “Similar quasars are usually found at much larger distances, so they appear much fainter, and we see them as they were when the Universe was only 2-3 billion years old. J1144 is a very rare source as it is so luminous and much closer to Earth (although still at a huge distance!), giving us a unique glimpse of what such powerful quasars look like.”

“A new monitoring campaign of this source will start in June this year, which may reveal more surprises from this unique source.”

Reference:

E S Kammoun, Z Igo, J M Miller, A C Fabian, M T Reynolds, A Merloni, D Barret, E Nardini, P O Petrucci, E Piconcelli, S Barnier, J Buchner, T Dwelly, I Grotova, M Krumpe, T Liu, K Nandra, A Rau, M Salvato, T Urrutia, J Wolf. The first X-ray look at SMSS J114447.77-430859.3: the most luminous quasar in the last 9 Gyr. Monthly Notices of the Royal Astronomical Society, 2023; 522 (4): 5217 DOI: 10.1093/mnras/stad952

Related Posts

Astronomers discover a highly habitable alien planet with a probability of 84% – Highest EVER

The Kepler mission discovered a planet orbiting the star KOI-3010 using the transit method. Researchers are drawn to this world because it has traits that are similar…

Quantum Experiment Breaks Reality By Seeing Two Versions Of Reality Existing At The Same Time

We are aware of how skewed our perception of reality is. How we see the world is shaped by our senses, our societies, and our knowledge. And…

Astronomers just discovered first direct evidence of black hole spinning

In a groundbreaking discovery, astronomers have obtained the first direct evidence confirming that black holes do indeed spin. This monumental finding focuses on the supermᴀssive black hole…

BREAKING🚨: AI Built To Find Aliens Just Picked Up EIGHT Aliens Radio Signals From Outer Space

Up until recently, astronomers have had difficulty separating probable alien signals from those created by humans. Thanks to a new artificial intelligence-trained system, eight unexplained radio signals…

Scientists Watched a Star Explode in Real Time for The First Time Ever

Astronomers have watched a giant star blow up in a fiery supernova for the first time ever — and the spectacle was even more explosive than the…

NASA’s $10 billion Telescope has just captured its first direct unbelievable image of a Planet outside our Solar system

The James Webb Space Telescope has captured the first direct image of a distant exoplanet, a world beyond our Solar System. Webb has returned several pictures of…